Practice Final Exam

April 25, 2022

Problem 1. (a) Find the directional derivative of $f(x, y, z)=x y^{2}+x^{2} z+y z^{3}$ at the point $(-1,0,1)$, in the direction given by the vector $\langle 1,2,-2\rangle$.
(b) Find the tangent plane to the surface $x y^{2}+x^{2} z+y z^{3}=1$ at the point $(-1,0,1)$.

Problem 2. Let D be the region between the circles $(x-1)^{2}+y^{2}=1$ and $(x-2)^{2}+y^{2}=4$, and above the x-axis (where $y \geq 0$). Evaluate the integral

$$
\iint_{D} y d A
$$

Problem 3. Evaluate the integral $\int_{C} y z d s$, where C is the line segment from $(1,0,2)$ to (3, -1, 3).

Problem 4. Let C be the curve given by $\mathbf{r}(t)=\left\langle t^{2}, e^{t}, t^{3}\right\rangle$ from $t=0$ to $t=1$. Evaluate the integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where \mathbf{F} is the field

$$
\mathbf{F}(x, y, z)=\langle y z \cos (x z), y+\sin (x z), x y \cos (x z)+\cos (z)\rangle
$$

Problem 5. Let C go from $(1,-1)$ to $(1,1)$ along the path $x=y^{4}$, and then back to $(1,-1)$ along the path $x=2-y^{2}$. Evaluate the integral

$$
\int_{C}\left(e^{x+y}+\cos \left(x^{2}\right)\right) d x+\left(e^{x+y}-3 x\right) d y
$$

Problem 6. Let S be the surface given by $z=x^{2}+y^{2}, 1 \leq z \leq 2$, oriented downward. Evaluate the integral $\int \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\langle x+y, y, 1+z\rangle$.

Problem 7. Let S be the surface given by $z=x y, x^{2}+y^{2} \leq 1$, oriented upward. Evaluate the integral $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}$, where \mathbf{F} is the field

$$
\mathbf{F}(x, y, z)=\left\langle y, e^{x^{4}} \sin \left(1-x^{2}-y^{2}\right), z\right\rangle .
$$

Problem 8. Let S be the surface given by $x^{2}+y^{2}+z^{2}=4, x \geq 0$, oriented in the direction of the positive x-axis. Evaluate the integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where \mathbf{F} is the field

$$
\mathbf{F}(x, y, z)=\left\langle e^{y^{2}+z^{2}}, 3 y, e^{y^{2}-1}\right\rangle
$$

Problem 9. Let E be the solid bounded by the surfaces $x^{2}+z^{2}=2, y+z=3, y=0$. Evaluate the integral $\iiint_{E} z d V$.

Problem 10. Let $f(x, y)=3 x^{2}+y^{2}+6 x y+8 y$.
(a) Find and classify the critical points of $f(x, y)$.
(b) Does the function $f(x, y)$ have a global minimum? Justify your answer.

Problem 11. (a) Set up and DO NOT evaluate the following integral in the order $d x d y d z$:

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} x^{2} d z d y d x
$$

(b) Set up and DO NOT evaluate the following integral in spherical coordinates:

$$
\int_{0}^{\sqrt{3}} \int_{0}^{\sqrt{3-x^{2}}} \int_{\sqrt{3 x^{2}+3 y^{2}}}^{3} y d z d y d x
$$

