Practice Final Exam

April 25, 2022

Problem 1. (a) Find the directional derivative of $f(x, y, z) = xy^2 + x^2z + yz^3$ at the point (-1, 0, 1), in the direction given by the vector (1, 2, -2).

(b) Find the tangent plane to the surface $xy^2 + x^2z + yz^3 = 1$ at the point (-1, 0, 1).

Problem 2. Let *D* be the region between the circles $(x - 1)^2 + y^2 = 1$ and $(x - 2)^2 + y^2 = 4$, and above the *x*-axis (where $y \ge 0$). Evaluate the integral

$$\iint_D y dA.$$

Problem 3. Evaluate the integral $\int_C yz ds$, where *C* is the line segment from (1, 0, 2) to (3, -1, 3).

Problem 4. Let *C* be the curve given by $\mathbf{r}(t) = \langle t^2, e^t, t^3 \rangle$ from t = 0 to t = 1. Evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where \mathbf{F} is the field

$$\mathbf{F}(x, y, z) = \langle yz \cos(xz), y + \sin(xz), xy \cos(xz) + \cos(z) \rangle$$

Problem 5. Let *C* go from (1, -1) to (1, 1) along the path $x = y^4$, and then back to (1, -1) along the path $x = 2 - y^2$. Evaluate the integral

$$\int_{C} (e^{x+y} + \cos(x^2))dx + (e^{x+y} - 3x)dy$$

Problem 6. Let *S* be the surface given by $z = x^2 + y^2$, $1 \le z \le 2$, oriented downward. Evaluate the integral $\int \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = \langle x + y, y, 1 + z \rangle$.

Problem 7. Let *S* be the surface given by z = xy, $x^2 + y^2 \le 1$, oriented upward. Evaluate the integral $\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S}$, where **F** is the field

$$\mathbf{F}(x,y,z) = \left\langle y, e^{x^4} \sin(1-x^2-y^2), z \right\rangle$$

Problem 8. Let *S* be the surface given by $x^2 + y^2 + z^2 = 4$, $x \ge 0$, oriented in the direction of the positive *x*-axis. Evaluate the integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where **F** is the field

$$\mathbf{F}(x,y,z) = \left\langle e^{y^2 + z^2}, 3y, e^{y^2 - 1} \right\rangle$$

Problem 9. Let *E* be the solid bounded by the surfaces $x^2 + z^2 = 2$, y + z = 3, y = 0. Evaluate the integral $\iiint_E z dV$.

Problem 10. Let $f(x, y) = 3x^2 + y^2 + 6xy + 8y$.

- (a) Find and classify the critical points of f(x, y).
- (b) Does the function f(x, y) have a global minimum? Justify your answer.

Problem 11. (a) Set up and DO NOT evaluate the following integral in the order *dxdydz*:

$$\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} x^2 dz dy dx.$$

(b) Set up and DO NOT evaluate the following integral in spherical coordinates:

$$\int_0^{\sqrt{3}} \int_0^{\sqrt{3-x^2}} \int_{\sqrt{3x^2+3y^2}}^3 y dz dy dx.$$